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A new system of approximating equations is derived for three-dimensional steady 
viscous compressible flows in which a primary flow direction is present, but in which 
both transverse velocity components can be large. If the transverse velocity vector 
which corrects a given potential flow is first decomposed into ‘potential’ and 
‘rotational ’ vector components, then a re-examination of three-dimensional boundary- 
layer theory shows that both components (v$, w ~ )  of the potential-velocity vector may 
be assumed small, whereas both components (v+, w+) of the rotational-velocity vector 
and hence of the composite secondary flow (v, w) can remain of order unity. An 
assumption of small scalar potential then leads to a system of governing equations 
whose characteristic polynomial has a non-elliptic form for arbitrary Mach number, 
without introducing any direct approximation of either streamwise or transverse 
pressure gradient terms. These non-elliptic equations can be solved very economically 
as a well-posed initiallboundary-value problem. Computed results for laminar 
subsonic flow in a curved square duct confirm the small scalar-potential approximation 
for both large (R/d = 100) and small (R/d = 2 )  radius of curvature. Other compu- 
tations for R/d  = 2.3 are in good agreement with the measurements of Taylor, 
Whitelaw & Yianneskis (1980). 

1. Introduction 
A predominant direction of flow can be identified in many high-Reynolds-number 

flow problems. This primary flow direction may derive from the direction of flight 
in external aerodynamics or from the ducted nature of many internal flows. Many 
of these flows are inherently three-dimensional because of geometry and/or other 
factors. When viscous effects or other sources of vorticity are present, three-dimen- 
sional flows differ fundamentally from their two-dimensional counterparts in that 
large secondary flows are easily generated by a deflection of the primary flow and/or 
by other mechanisms. Secondary-flow theory (reviewed by Horlock & Lakshmina- 
rayana 1973 ; Lakshminarayana & Horlock 1973) affords considerable insight into 
the generation of secondary flow and establishes that streamwise vorticity on the 
order of 50% of the transverse vorticity (shear) can be generated by a lateral flow 
deflection of only 15’. The large secondary flows thus generated often exert an 
appreciable influence on the primary flow, and thus aerodynamic performance, 
viscous flow losses and heat transfer can be affected significantly. 

The general complexity of three-dimensional viscous flows has led to a heavy 
emphasis on analytical methods which eventually lead to the numerical solution of 
governing partial differential equations. I n  the present paper, a new system of 
approximating equations is derived for steady three-dimensional viscous compressible 
flows in which a primary-flow direction with no significant flow reversal is present. 
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but in which either or both transverse velocity components can be of order unity. 
The solution of these equations can be accomplished by economical forward-marching 
numerical algorithms, and without the need for global iteration procedures. 

1 . 1 .  Related computational approaches 

The present discussion will focus on physical approximations and their general effect 
on computational labour, but will not address numerical approximations or the error 
and labour of specific algorithms. Although solution of the Navier-Stokes equations 
is feasible and has been demonstrated in three dimensions (e.g. Williams 1969; 
Briley & McDonald 1977 ; Humphrey, Taylor & Whitelaw 1977 ; Hah 1983), the labour 
of solution using presently available algorithms is considerable for high-Reynolds- 
number flows with multiple length-scales requiring locally refined three-dimensional 
meshes. For this reason there is an extensive literature which addresses simplification 
of the steady Navier-Stokes equations for the purpose of numerical solution, often 
for application to high-Reynolds-number flows without streamwise flow reversal. A 
portion of this literature is reviewed by Davis & Rubin (1980); other discussion can 
be found in references given here. All of the approaches considered here neglect 
streamwise diffusion in some manner. 

The goal of these approaches has been to achieve a level of approximation that 
would yield accurate flow predictions, while reducing the labour of solution below 
that of the Navier-Stokes equations. The computational labour is greatly influenced 
by the type of governing equations solved, and here it is important to note that 
terminology such as ‘parabolic ’ and ‘elliptic ’ has been interpreted differently by 
different authors. The variations in terminology seem to derive from a scalar 
viewpoint which associates each momentum equation with a given velocity component, 
instead of considering the system of equations as a whole. For the purposes of the 
present paper, the term ‘elliptic ’ is applied to systems of equations whose characteristic 
polynomial has one or more imaginary roots, and systems for which no imaginary 
roots occur are referred to as ‘non-elliptic’. This is discussed further in $ 3  and in 
Appendix A. Computationally, the distinction is very important, since elliptic 
systems are generally ill-posed for solution as an initial/boundary-value problem, 
whereas non-elliptic systems are solvable by much more economical forward- 
marching algorithms. Clearly, there is ample motivation to seek approximations of 
reasonable accuracy which offer the computational economy associated with 
non-elliptic approximating equations. 

An assumption that one or both transverse velocity components is small (in some 
coordinate system) has often led to non-elliptic approximating equations. The 
two-dimensional boundary layer is a well-known example, where the usual order- 
of-magnitude estimates justify neglecting all convective and viscous terms in the 
normal (y) momentum equation. If coordinate curvature terms are absent or 
neglected, then this equation reduces to ap/ay = 0, which can be integrated to obtain 
p = p(x) and introduced as a pressure approximation in the x-momentum equation. 
If significant curvature terms are present, as in the slender- (but curved-) channel 
approximations of Blottner (1977) and Anderson (1980), then the y-momentum 
equation can no longer be integrated to approximate the streamwise pressure-gradient 
term, and must be solved treating pressure as a dependent variable. Either approxi- 
mation produces non-elliptic equations, however, since coordinate curvature terms 
do not affect the analysis of characteristics. The same is true for three-dimensional 
boundary layers, and non-elliptic equations are obtained when convective and 
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viscous terms are neglected in the y-momentum equation, whether or not the 
streamwise pressure-gradient term is approximated using p = p ( x ,  2).  

If both transverse velocity components are small in a three-dimensional flow, and 
if curvature terms are negligible, then the transverse momentum equations reduce 
to i3pIay = 0 and apIi3z = 0, and this justifies an approximation p = p ( x )  in the 
x-momentum equation which produces non-elliptic equations. The analysis of Rubin, 
Khosla & Saari (1977) for entry flow in straight ducts contains an example of this 
type. Other approaches that assume that both transverse velocity components are 
small are discussed by Baker & Orzechowski (1983) and Anderson & Hankins (1981). 

I n  the flows addressed here, both transverse velocity components may be large, 
significant curvature terms may be present, and the geometry may contain streamwise 
corners in which the surface normal changes direction. Conventional boundary layer 
arguments based on a small normal velocity component are clearly not applicable 
in these circumstances. For this type of flow, many authors have instead used an  
approximation based on a multiple definition of pressure, in which the streamwise 
pressure gradient has a known form, but is completely independent of the transverse 
pressure-gradient terms. Although not based on order-of-magnitude estimates, this 
approximation has been found to produce non-elliptic equations and has been used, 
for example, by Patankar & Spalding (1972), Carreto, Curr & Spalding (1973), Briley 
(1974), Ghia & Sokhey (1977), Kreskovsky, Briley & McDonald (1981) and Levy, 
Briley & McDonald (1983). In  the authors’ experience, this particular approximation 
can provide reasonable accuracy for many problems if the streamwise pressure 
gradient is represented by a potential-flow pressure with a mean-pressure correction, 
and with no approximation introduced for transverse pressure gradients. Nevertheless, 
the multiple definition of pressure does not allow the streamwise momentum balance 
to be influenced by experimentally observed distortions of the static pressure field, 
which are induced by large secondary flows. 

One approach which avoids approximations in pressure-gradient terms neglects 
only streamwise diffusion terms in the Navier-Stokes equations. This approximation 
is not very restrictive and only requires a coordinate system aligned with shear layers ; 
these equations are also suitable for problems with reversed flow. The diverse 
approaches of Pratap & Spalding (1976), Moore & Moore (1979), Pulliam & Steger 
(1980) and Rubin & Reddy (1983) are all based on these approximating equations, 
which are often termed the parabolized or thin-layer Navier-Stokes equations. 
Although the neglect of streamwise diffusion is often described as a parabolizing 
approximation, it is generally agreed that in subsonic-flow Yegions these governing 
equations are in some sense ‘elliptic ’ unless further approximation is introduced, 
usually in the streamwise pressure gradient. This is discussed, for example, by Davis 
& Rubin (1980), and the case of mixed supersoniclsubsonic flow has been studied by 
Vigneron, Rakich & Tannehill (1978) and Schiff & Stegcr (1980) among others. If 
forward-marching algorithms are used when only streamwise diffusion is to be 
neglected, then these algorithms are normally used within a context of global 
iteration analogous to that employed in time-like or other global iteration algorithms 
for the Navier-Stokes equations. A classification based on relevant viscous and 
inviscid characteristic equations is given in Appendix A for most of the approximating 
equations considered here, in their incompressible form. 

In  the present paper the boundary-layer order-of-magnitude estimates are re- 
examined in terms of a transverse velocity which has been decomposed into potential 
( v ~ ,  w ~ )  and rotational (w+ w ~ )  components which are themsclves vectors, instead of 
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the usual representation in terms of the velocity components v and w. It is found that 
the potential-velocity vector must be small when either transverse coordinate can 
be the surface normal of a boundary layer, whereas the rotational-velocity vector can 
be of order unity and parallels the growth in streamwise vorticity. The potential- and 
rotational-velocity vectors thus have the same role in deriving approximations for 
a viscous secondary flow as the ‘normal’ and ‘crossflow’ velocity components in a 
three-dimensional boundary layer. An assumption of small scalar potential then leads 
to viscous approximations neglecting streamwise diffusion, and inviscid approxi- 
mations affecting convective terms in the transverse momentum equations and 
stagnation enthalpy. On examination of the characteristic polynomial, i t  is found 
that the viscous approximation alone is sufficient to  produce a parabolic system of 
equations. However, the presence of essentially inviscid-flow regions at high Reynolds 
number suggests that  the approximations used should also reduce the Euler 
equations to a non-elliptic form. The present inviscid approximations reduce the 
compressible Euler equations to a non-elliptic form for arbitrary Mach number. 
The resulting non-elliptic approximating equations can then be solved as an 
initiallboundary-value problem, with a consequent saving in computer resources. 
Although the approximations introduced here appear to have a wider range of 
applicability which includes both internal- and external-flow problems, the present 
investigation is restricted to laminar subsonic flow in a square duct having appreciable 
streamwise curvature. 

2. Derivation of the small-scalar-potential approximation 
2 . 1 .  Compressible Navier-Stokes equations 

I n  the present notation all variables are non-dimensional, having been normalized 
by reference quantities denoted by a subscript r,  and all vectors are identified by 
boldface type. The continuity equation is givcn by 

v.pu= 0 (2.1) 

where p is density and U is velocity. The momentum equation is expressed in vector 
form as pM = 0, where 

M =  (U.V)U+p-’Vp-Re-lF= 0. (2.2) 

Here p denotes pressure, and F denotes force due to viscous stress. The reference 
pressure p ,  has been taken as pr U:, and the Reynolds number Re is defined by 
Re = p, U ,  L,/p,., where L denotes length and ,u denotes molccular viscosity. The 
equation of state for a perfect gas may be written as 

P = PTIYM:, (2.3) 

E =  T + : ( y - l ) M : q 2  (2.4) 

and the total enthalpy E is defined by 

where q2 E U .  U. Here T denotes temperature, and the reference enthalpy E, has been 
taken as C,T,, where C ,  is specific heat a t  constant pressure. The reference Mach 
number M ,  is defined by M,  = Ur/cr, where c, is the reference speed of sound defined 
by c2 = yRT,, and where y is the specific-heat ratio and R is the gas constant. The 
energy equation can be expressed in terms of total enthalpy as 

pU.VE = ( R ~ P r ) - 1 V . k V E + ( y - 1 ) M : R e - 1 [ p ~ + p U . F - P r - 1 V . k V ~ q 2 ] ,  (2 .5 )  
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where @ is the dissipation function, k is thermal conductivity, and the Prandtl number 
Pr is defined by Pr = C, ,u,/k,. Note that temperature T does not appear in the energy 
equation (2.5). The temperature can also be eliminated from the state equation by 
combining (2.3) and (2.4), giving 

There are two advantages to the formulation given here. First, if ,u and k are zero, 
then the energy equation (2.5) states that the total enthalpy E is constant along 
streamlines. I n  many compressible flows with negligible heat transfer and with 
Pr x 1,  E can be assumed to be a known constant E,. The energy equation can then 
be omitted from consideration, since (2.6) is sufficient to relate density to pressure 
and velocity, and thus close the system of equations. If the total enthalpy is not 
constant, then the energy equation is solved. The second advantage is that  this 
formulation is well behaved at low Mach number. This was shown by Briley, 
McDonald & Shamroth (1983), by noting that if a pressure coefficient $CP = p - l/yM: 
is introduced, then for constant total enthalpy this compressible formulation reduces 
to the incompressible (p = 1 )  equations in the limit M,+O. 

I n  the development that follows, the coordinates x, y ,  z,  velocity components u, 
v, w, and the unit vectors il, iz ,  i3 in the x-, y-  and z-directions respectively, refer 
to  a general orthogonal coordinate system. The metric coefficients are denoted h,, h, 
and h,. 

2.2. Physical background 

The viscous developing flow in a rectangular duct whose centreline has appreciable 
curvature is representative of the primaryllarge-secondary flow structure of interest 
here, and provides an  orientation and physical basis for the present flow approxi- 
mations. The corresponding (incompressible) entry flow in a straight square duct has 
been considered in some detail by Rubin et al. (1977). Excluding a small region of 
axial extent Re-' near the leading edge, the flow structure in the straight duct consists 
of boundary layers, corner-layer regions, and a potential-core region with displacement 
interaction (blockage) effects. Further downstream, the flow structure evolves into a 
fully viscous region where the boundary-layer, corner-layer and potential-core 
regions merge and become less distinct. Eventually, the flow becomes fully developed 
and independent of axial distance. 

If the duct centreline is given an appreciable curvature in the region where thin 
boundary and corner layers are present, a different flow structure evolves. The 
potential flow for this curved geometry has radial pressure gradients beginning about 
one to  two hydraulic diameters upstream of the bend, and three-dimensional 
boundary layers thus form on the endwalls, with large radial crossflow toward the 
inside corners of the bend. A schematic of the cross flow behaviour near the change 
in curvature is shown in figure 1 ,  as deduced from flow-visualization experiments and 
other sources. Since the flow is confined, the crossflow is deflected in the corner and 
returns to  the centre region of the duct. A corner-vortex structure may be formed, 
depending on the flow parameters present. As indicated in figure 1, the outer portion 
of the boundary-layer and corner-flow regions away from the walls behaves as a 
rotational inviscid flow region in which secondary flow is generated (in the terminology 
of secondary-flow theory) by turning of the transverse vorticity (shear). Viscous 
effects are limited to the region very near the wall. This initial behaviour of the 
endwall boundary layer near the change in duct curvature is consistent with empirical 
observations of boundary-layer velocity profiles having triangular polar diagrams 
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FIGURE 1 .  Schematic of a secondary-flow structure near start of bend. 

(e.g. Johnston 1960). The rotational inviscid behaviour is also reminiscent of the 
middle rotational inviscid layer of triple-deck theory for a two-dimensional boundary 
layer subjected to a streamwise disturbance, although the latter case does not involve 
streamwise vorticity. As the flow proceeds downstream, the secondary flow convects 
the streamwise vorticity and distorts the primary flow in what amounts to a strong 
interaction in transverse directions between viscous and inviscid (rotational or 
potential) flow regions. Significant regions of rotational but essentially inviscid flow 
occur as a result of this process, and the potential-core region will eventually 
disappear. If the duct curvature is constant, an incompressible flow can eventually 
reach a state of fully developed curved flow. 

Finally, it  has been known for some time that measured static pressure distributions 
tend to depart significantly from the potential-flow pressure when large secondary 
flows are present. This is clear, for example, from the measurements of Stanitz, Osborn 
& Mizisin (1953) in a strongly curved duct, where the measured static pressure is 
three-dimensional near the inside corners of the duct, even though the potential flow 
for this particular geometry is two-dimensional. This behaviour is in contrast with 
a two-dimensional flow with small transverse velocity, where the modification of the 
potential-flow pressure due to viscous interaction is often slight unless separation is 
present. 

The present analysis introduces approximations which are consistent with an 
evolving flow structure of the type just described. Because of the strong interrelation 
of the potential-core region, rotational inviscid region and viscous region near walls, 
a single set of approximate equations will be derived for simultaneous application 
to all of these flow regions a t  each transverse plane. 

2.3. Secondary-velocity decomposition 

The x-coordinate is chosen here to identify the primary-flow direction, and the 
secondary flow occurs in the transverse (normal) (y, 2)-coordinate surfaces. The 
secondary (transverse) velocity components are first formulated as a correction to 
a known potential flow solution for the geometry of interest. These correction 
velocities, which arise from viscous effects and secondary flows, are not assumed to 
be small ; instead, approximations based on a small scalar-potential contribution to 
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these correction velocities will be derived. The velocity components and pressure from 
this potential flow are known quantities denoted U ,  V ,  W, and P. The transverse 
velocity components V and W from the potential flow incorporate downstream 
information from the geometry and boundary conditions, and this together with the 
choice of coordinates is the only means by which downstream conditions are 
represented in the analysis. Transverse velocity corrections 6v, 6w are introduced as 
follows : 

v =  V+6v, w =  W+6w, (2.7 1 

U =  i,u+ U,+SU, (2.8) 

and the velocity vector U is then written as 

where u is the primary (streamwise) velocity component, and Us and SU, are 
transverse velocity vectors defined by 

Us = iz V+i ,  W ,  

SU, = iz6v+i,6w. 

(2.9) 

(2.10) 

Approximate equations governing u, 6v, 6w a n d p  (and for compressible flow p and E )  
will be derived subsequently. The purpose of (2.7) is to define the approximations 
relative to V and W from the potential flow, independent of the streamwise coordinate 
direction. If the x-coordinate is aligned with the potential flow streamlines, then V 
and W are identically zero, and (2.7) is a simple redefinition. 

I n  deriving the present approximating equations, care will be taken to ensure that 
the final equations have the property that for zero viscosity and inviscid boundary 
conditions, the analysis can recover the potential flow solution by a forward-marching 
calculation (i.e. u, v, w, p+ U ,  V ,  W ,  P) .  This occurs because the approximations are 
exact when 6v, 6w are zero, giving v, w+ V ,  W ,  and for incompressible flow u and p 
are then determined without approximation by the continuity and x-momentum 
equations. This property is retained if the potential flow is compressible, since the 
analysis then yields constant total enthalpy (for adiabatic flow), with density 
determined algebraically by the equation of state. Likewise, if an Euler solution is 
available, it  can be used in place of the potential flow, although a potential flow is 
much more economical to compute. 

The secondary velocity correction 6 Us is now replaced by the following vector-field 
decomposition : 

SU, = V,$+p-'Vxi,+ (2.11) 

where V, is the (transverse) surface gradient operator, which is given for orthogonal 
coordinates by 

(2.12) 

The decomposition (2.11) defines the two components of an arbitrary vector 6 Us in 
the (y,z)-surface, and is thus equivalent to a change in dependent variables from 
6v, 6w to $, +. The analysis and notation are simplified if (2.1 1 )  is rewritten as 

SU, = U$+U@ (2.13) 

where U6 and Uk are the $- and +-components respectively of SU,. The (composite) 
transverse velocity components in (2.7) can now be expressed as 

v = V+V$+W@, w = W+w$$+w*,, (2.14) 
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where v4, wc and v$, w$ are the components of U$ and U$ respect,ively. The vectors 
U4 and U$ satisfy the following identities of the decomposition : 

i;V x U4 = 0, (2.15) 

V.PU$ = 0. (2.16) 

The form of (2.15) and (2.16) suggests a physical interpretation for the $- and 
4-components ofthe secondary velocity. From (2.15), U# does not contribute to the 
streamwise component of vorticity, whereas (2.16) shows that the continuity 
equation is satisfied for arbitrary U$. Thus U,,+ is the secondary velocity induced by 
streamwise vorticity, whereas U4 is generated through continuity by the streamwise 
gradient apulax. 

In  Cartesian coordinates and with p = 1 ,  the correction velocities take thc simple 
form 

(2.17a-d) 

in which $ and 4 have the same definitions as the conventional velocity potential 
($) and stream function (4 )  for two-dimensional flow in the (y, z)-plane. Rubin et al. 
(1977) employed the change of variables (2.17u-d) in their study of incompressible 
entry flow in straight ducts, because of advantages that arise in devising numerical 
algorithms (also exploited here). The velocity decomposition (2.11) extends this 
change in variables to  general orthogonal coordinates and nonconstant density, by 
interpreting $ as a scalar ‘surface’ potential, and i, 4 as a vector ‘surface’ potential. 
This velocity decomposition will later provide a means for introducing new flow 
approximations which lead to a non-elliptic system of equations. Finally, for 
two-dimensional flow in the (x, y)-plane, the only non-zero component in (2.17a-d) 
is v4. Although the use of ( 2 . 1 7 ~ )  in two dimensions is not necessary in the present 
context, in the composite-velocity formulation of Khosla & Rubin (1983) this 
expression is supplemented by u = ( 1  +a$/ax) U ( x ,  y) and is used to devise a 
numerical algorithm for the Navier-Stokes equations. 

2.4. Order of magnitude estimates 

To guide the present flow approximations, it is instructive to re-examine the 
order-of-magnitude estimates from conventional three-dimensional boundary-layer 
theory, as they apply to the decomposed secondary velocity in (2.11). For simplicity 
(but ultimately without loss of generality), i t  is sufficient to considcr a streamwise 
coordinate aligned with the potential flow, such that V = W = 0. In this case, the 
decomposed transverse velocity components are given by 

(2.18) 

(2.19) 

Taking 6 as the shear layer thickness and assuming that h,, h,, h, are 0 ( 1 )  quantities, 
the following order-of-magnitude estimates are made in three-dimensional boundary 
layer theory. 

If y is taken as the coordinate normal to the wall then 

a 2  
ax aZ aY 

p,  u, w ,  -, - = O( l ) ,  1) = O(S), - a - - o(6-1). (2.20) 
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If z is taken as the normal coordinate then 

a a  a 
ax a y  a2 

p , u ,  w , - - -  = 0(1), w = 0 ( 6 ) ,  - = O(6-1). (2.21) 

On comparison of (2.18), (2.19) with (2.20), (2.21) it is found that the only estimate 
for 4 and + that is consistent with both (2.20) and (2.21) is 

4 = 0(a2 ) ,  k = W), (2.22) 

and consequently, if y is the normal coordinate then 

V $ ,  w* = 0 ( 6 ) ,  W$  = 0(62) ,  w$ = O ( l ) ,  (2.23) 

and if z is the normal coordinate then 

W$,W* = 0 ( 6 ) ,  W$ = O ( P ) ,  v$ = O(1).  (2.24) 

It follows that an assumption 

W,l= o m  u>Iu$l= O ( 1 )  (2.25) 

is required by boundary-layer scalings in which either of the transverse coordinates 
y or z can be taken as the normal coordinate. Note that as a consequence of (2.23) 
and (2.24), the composite velocity components v and w are both 0(1), and thus these 
scalings for U$ and U@ are compatible with a rotational inviscid flow in the corner 
region and elsewhere outside the viscous layer, in which v and w are of order unity. 

It is of further interest to  estimate the magnitudes of 4 and + likely to occur in 
the cross-section outside the inner viscous region. Equations governing 4 and @ will 
later be derived by combining (2.11) with the continuity equation and the definition 
of streamwise vorticity SZ,. These equations have the form of a ‘Poisson’ equation 
in the transverse coordinates, and defining 6 u  = u- U ,  i t  is easily shown that the 
forcing functions are i3(6u)/ax for the equation governing 4, and 52, for the equation 
governing *. Assuming that the normal components of U+ and U$ are zero on 
boundaries, 4 and + are essentially integrals of these forcing functions, and thus 
estimates of the prevailing order of magnitude of 4 and + can be obtained by 
estimating a(6u)lax and SZ, respectively. 

The potential-core region should behave in a manner analogous to the straight duct, 
and the quantity 6u thus represents the displacement effect of the shear layers on 
the interior flow (blockage). If 6* is taken to represent the ‘average’ displacement 
thickness for the cross-section, and if U and the cross-sectional area are taken as 1 ,  
then 6u is related to 6* by 

1+6u = (1-6*)-1= 1+6*+0(6*2). (2.26) 

Since a/ax = 0(1), it  follows that i3(6u)/ax and ultimately U+ are of order 6* for the 
displacement-interaction effect. 

When the largest source of streamwise vorticity present is that  generated in 
the outer portion of the boundary layer by turning, fz, can be estimated from the 
Squirewinter formula of secondary-flow theory (cf. Horlock & Lakshminarayana 
1973a), which can be written as 

A B , = - 2  -dx. sr: (2.27) 

Here ADl is the change in 52, along a streamline whose principal radius of curvature 
is R, and 9 is transverse vorticity in the direction of R. Since 7 is of order 6-1 in the 
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boundary layer, the increase in 52, will surpass the O(S*) level of a(&u)/ax in a very 
short axial distance, and thus U$ will become large relative to U$, unless R is very 
large. As pointed out in 9 1 ,  the change in 52, is 50 yo of 7 after a deflection angle dx/R 
of only 15". The large secondary velocity U$ will convect 52, into the flow field and 
distort contours of the primary velocity u. Although the distortion of u eventually 
contributes to 6u, this effect follows the generation of large U$ and occurs where U$ 
is already large. I n  light of these observations, i t  is concluded that an assumption 
such as (2.25) is reasonable throughout the cross-section. 

Finally, if the flow is incompressible, i t  can become fully developed (a/ax = 0). Since 
a(Su)/ax is zero in a fully developed flow region, and since the normal component U$ 
is zero on boundaries, i t  follows that U6 is identically zero in a fully developed flow. 
As a consequence all approximations based on an assumption of small U$ become 
exact in regions of fully developed flow. It is also worth noting that if the x-coordinate 
is not aligned with the given potential flow ( V ,  W + 0) then the present formulation 
does not necessarily require that I' and W be small; i t  is only necessary that the 
corrections v6 and wI are small. 

2.5. Inviscid approximations for convective terms 

For convenience in defining the present approximations, a parameter p (to be 
assigned a value of 0 or 1) is introduced in the expressions for transverse velocity 
components as follows ; 

v = V+V$+V@ 6 = v+pv,+v,, (2.28) 

w = W+W$+W,, 22, = W+PW$+W$. (2.29) 

The approximation to be defined by choosing ,8 = 0 will be referred to here as the 
small-scalar-potential approximation. Using (2.28) and (2.29), the components of the 
convective term C(v) = ( U * V )  U can be expressed in orthogonal coordinates as 
follows : 

C, = U'VU + u(vK,, + wKI3)  - v2K2, - w2K3,, (2.30) 

C2 = U .  V6- u(uK,, - v"K2,) - ~(22,K,, - 6K2,), (2.31) 

C, = U .  V22, - u(uK13 - ZZ'K,~) + ~(22,K,, - 6KZ3),  (2.32) 

where the quantities Kii are the geodesic curvatures of the coordinates, defined by 

(2.33) 

and in which x,, x2, x3 are interchangeable with x, y, z respectively. The present 
convective approximation is made by setting /3 = 0 in (2.28) and (2.29) and hence 
in c2, C3; no approximation is made in C,. If p = 1 ,  then 6, tZ = v, w, and the above 
expressions for c2, 6, revert to C,, C,, their exact forms. 

The particular form of the approximations (2.31) and (2.32) in transverse convective 
terms entails the following considerations. 

From the order-of-magnitude estimates of (2.20) and (2.21), i t  is evident that  all 
terms of the convective operator 

(2.34) 

must be retained, since each term is O(1) when either y or z is the normal coordinate. 
Since U.V is an 0(1) operator, when i t  is applied to the transverse velocity com- 
ponents vu4, wu4, v,, w$ the resulting convective terms are the same order as the velocity 
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components themselves, as given in (2.23) and (2.24). As a consequence, settingp = 0 
retains all O(1) terms and neglects only O(6) terms containing v4, w4. All remaining 
terms in (2.31) and (2.32) are curvature terms containing K i j ;  these are assumed to 
be 0(1) terms and are retained. The curvature terms do not affect the analysis of 
characteristics, and the only purpose for approximating these terms as shown in (2.31) 
and (2.32) is that some simplification will occur when the equations are later 
reformulated for numerical solution. All of the approximations in (2.31) and (2.32) 
are consistent with the assumption of small U+ as in (2.25). 

Viscous approximations will be introduced in $2.6. If the modified viscous force 
is denoted by F', then the momentum equations as approximated here can be 
expressed as p M  = 0, where the components of M are given by 

(2.35) aP 
ax 

ay 

aZ 

M ,  = C, + (ph,)-l- - Re-' Fi = 0 ,  

(2.36) M2 = c2+ (ph,)pl--Re-l aP 

M~ = C3+(ph3)-1---Re-1Fi aP 

Fi  = 0, 

(2.37) 

Note that no approximation has been made in the streamwise convective term C, 
or in any pressure gradient term in (2.35)-(2.37). The continuity equation remains 
unapproximated as in (2.1). 

= 0. 

2.6. Viscous approximation neglecting streamwise diffusion 
The viscous force F i n  (2.2) can be written for constant ,u as 

pF= -pVxQ+(h+2p)V(V.U) ,  (2.38) 

where 52 = V x U is vorticity and ,u and h are viscosity coefficients. The boundary 
layer order-of-magnitude estimates of (2.20)-(2.24), supplemented by Re = O ( F ) ,  
are employed to  estimate the importance of viscous terms. It is found that all terms 
that contain either a derivative with respect to x or that contain v4 or w4 are O(6) 
or smaller, and this justifies neglecting any such term. Although some other O(6) 
terms are present which might be neglected, if only terms containing a/ax, v+ or w6 
are neglected, then the approximation will have the desirable attribute of being 
exact for a fully-developed incompressible flow (recall that U, = 0 in this case). 

For moderate subsonic Mach numbers V. Uis small, and thus the last term in (2.38) 
is neglected here. Neglecting all x-derivatives gives the following approximation for 
Fi  in orthogonal coordinates : 

By neglecting x-derivatives in the transverse components of V x 52, the viscous terms 
F; and Fi  can be approximated in terms of the streamwise vorticity SZ, as follows: 

(2.40) 

(2.41) 
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(2.42) 

Note that none of the viscous terms remaining in (2.40)-(2.42) depend on U6, and 
thus the present approximation neglecting streamwise diffusion differs from that 
conventionally adopted by neglecting all x-derivatives of u, v and w. Subsequently, 
the difference between these two methods of approximating viscous terms in the 
transverse momentum equations will be shown to  affect the classification of the 
system of equations. 

2.7. Approximations affecting total elzthalpy 
For compressible flow a second inviscid approximation is made, neglecting Ud in the 
definition (2.4) of stagnation enthalpy as follows : 

E z ,!? = T + i ( y - 1 ) T g 2 ,  (2.43) 

where p" =_ u2+?+G2. As before, if p = 1 then E = E ,  and the above expression 
reverts to its exact form. The state equation (2.6) now becomes 

(2.44) 

If the stagnation enthalpy is not constant, an energy equation is solved. In  the 
energy equation (2 .5)  the bracketed terms are small for moderate subsonic Mach 
numbers and especially if Pr x 1. Neglecting these terms, setting E x g,  and 
neglecting all conduction terms containing an x-derivative, the energy equation can 
be approximated as 

pU.Wi?= (RePr)-lW.IcW,,!?. (2.45) 

An approximate form of (2 .5 )  which includes some of the terms in brackets is given 
in Appendix B. 

2.8. Summary of approximating equations 

For compressible flow, the small-scalar-potential approximation provides a system 
of eight equations governing the five velocity components u, v6, wc, v$, w$. pressure 
p ,  density p and modified total enthalpy 9. The equations consist of continuity (2.1), 
three components of momentum (2.35)-(2.37), the state equation in the form (2.44), 
the energy equation (2.45), and the decomposition identities (2.15) and (2.16). These 
latter identities are needed because of the increase in the number of dependent 
variables which occurs as a result of the velocity decomposition. For an incompressible 
flow p and ,!? are constants, and the state and energy equations are omitted. 

Although the dependent variables given above are convenient for the analysis of 
characteristics in $3, they are not convenient for numerical solution, and for this 
purpose the equations are reformulated in terms of the axial velocity u, pressure p ,  
streamwise vorticity a,, scalar and vector surface potentials $ and $, together with 
density p and modified total enthalpy i?. Second-order equations for 0, and p are 
derived by taking the divergence and curl of the transverse vector momentum 
equation. These two second-order equations then replace the two transverse 
momentum equations and the two first-order decomposition identities. Letting 
M, = i, M2 + i, M3 denote the vector transverse momentum equation including all 
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approximations, the equations governing streamwise 
are given by 

i ; V x p M S  = 0, 

V - p M ,  = 0. 

velocity 59 

vorticity a, and pressure p 

(2.46) 

(2.47) 

Incorporating the definitions of U+ and U$, the continuity equations becomes 

V . p ( i , u + V , # +  Us)  = 0, (2.48) 

and the definition of 52, becomes 

52, = i;V x [P-lV x i ,  $+ Us]. (2.49) 

The final system of equations consists of (2.46)-(2.49) above, the x-momentum 
equation (2.35), the state equation (2.44) and the energy equation (2.45). These 
equations are given for a general orthogonal coordinate system in Appendix B. 

3. Suitability for forward-marching solution 
3.1. Classification of equations 

Systems of partial differential equations have been classified as elliptic, hyperbolic 
or parabolic according to the roots of the characteristic polynomial equation (e.g. 
Courant & Hilbert 1966). Systems of an intermediate type which do not fit any one 
of these categories are encountered here and elsewhere. The present concern, however, 
is only whether the equations permit or preclude solution as a well-posed 
initial/boundary-value problem, by integration in a ' time-like ' coordinate direction. 
Garabedian (1964) considers when an independent variable may be identified as a 
time-like variable, and citing an example problem for a linear homogeneous system 
with constant coefficients, concludes that i t  is natural to require that every root of 
the characteristic equation be real, as this excludes solutions that may grow 
exponentially with the time-like variable. This criterion is employed here to  test 
systems of equations for time-like behaviour in a chosen coordinate variable. I n  view 
of the exponential growth which may occur in linear systems with constant 
coefficients, systems with one or more imaginary roots are presumed to be ill-posed 
for solution as an initial/boundary-value problem and are referred to  here as elliptic 
(with respect to the chosen coordinate). Systems with no imaginary root for the 
time-like coordinate are presumed to be well-posed and are referred to as non-elliptic. 

The present system of equations is of mixed order in that the velocity components 
appear in second-order derivatives, while the pressure appears only in first-order 
terms. To classify this mixed-order system, it is first rewritten as an equivalent 
first-order system and then examined following standard procedures for classification 
of n-dimensional systems of first-order partial differential equations (e.g. Courant & 
Hilbert 1966). The equations can be written as the following quasilinear system of 
m three-dimensional partial differential equations : 

for the m-dimensional column vector @ of dependent variables, and with x,y, and 
z the independent variables (spatial coordinates). The square matrices At and the 
column vector B contain coefficients depending only on x, y, z and @. The derivative 

3 P L M  144 
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operators a/ax, a/ay ,  a/az are replaced by A,, A, and A, respectively, and the mth- 
order characteristic polynomial equation is given by thc determinant 

IA,A,+A,A,+A,A,I = 0. (3 .2)  
Since x has been identified here as the time like coordinate, it  is appropriate to 
examine (3 .2)  for imaginary roots A,, assuming that arbitrary real values are assigned 
for A,, A,. 

Since the viscous terms will be small over much of the flow region, the approximating 
equations must be non-elliptic both with viscous terms present and in the inviscid 
limit of small viscosity. The presence of second-order viscous terms suppresses the 
influence of first-order terms on the characteristic equation (selectively if the system 
is of mixed order). Since all second-order terms disappear in the limit of small 
viscosity, the viscous characteristic equation is degenerate in this limit, and con- 
sequently, the viscous and inviscid cases must be considered separately. 

3.2. The viscous characteristic equation 

Only the incompressible form of the viscous equations is considered here. Since 
coordinate curvature terms do not affect the characteristic equation, it is sufficient 
to consider the Cartesian form of the equations. Taking p = = p = 1 and Us = 0, 
the equations assume a particularly simple form which clarifies how the small 
scalar-potential approximation appears in the equations. Introducing new variables 
F and G as needed for second-order terms, these equations can be expressed as the 
following first-order system : 

au au 
aY aZ F E -  or G E - .  

The characteristic equation for the system (3.3)-(3.11a) is given by 

R ~ C ~ A , ( A ; + A ~ ~  = 0 

( 3 . 3 )  

(3 .4)  

(3 .5)  

( 3 . 6 )  

(3.7) 

(3 .8)  

(3.9) 

(3 .10)  

(3.11a,b) 

(3 .12)  
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Since (3.12) has no imaginary roots in A,, the viscous equations in the form given 
here are non-elliptic. In  fact, since A, does not appear in (3.12), this system is 
parabolic. Furthermore, the parameter /3 does not appear in (3.12), and thus the 
viscous approximation used here produces nonelliptic equations even if the inviscid 
approximation /3 = 0 is not made. Other methods of neglecting streamwise 
diffusion may not lead to nonelliptic equations. I n  Appendix A it is shown that the 
conventional method which neglects all z-derivatives of u, v and w produces an elliptic 
system unless inviscid terms are also approximated. Even though the present viscous 
system of equations is parabolic, however, the viscous characteristic equation (3.12) 
is degenerate as Re-2 + O ,  and as mentioned previously, the characteristic equation 
for the inviscid system must also be considered for regions of inviscid flow. 

3.3. The inviscid characteristic equation 

The incompressible Euler equations are given by (3.3)-(3.8) with Re-l = 0. The 
characteristic equation for this system is 

(uh, + vAu + Wh,)2 (A;  + A;) (phi + A; + A ; )  = 0. (3.13) 

The three factors in (3.13) are respectively of hyperbolic, parabolic and elliptic form. 
For the Euler equations (p = 1) there is one pair of imaginary roots A, associated 
with the last factor. The well-known result that  the incompressible Euler equations 
are elliptic follows from the occurrence of imaginary roots in (3.13). When the 
small-scalar-potential approximation is made (p = 0) ,  the imaginary roots associated 
with the last factor in (3.13) are removed, and thus this approximation produces a 
non-elliptic approximation of the incompressible Euler equations. 

The compressible Euler equations are given by (2.1), (2.15), (2.16), (2.35)-(2.37), 
(2.44) and (2.45), with Re-I = 0, and the characteristic equation for this system is 
given by 

(uh, +vh, + WhJ3 (A;  + h;)[(phi + A; + A;) - M; T-l(uh, + a,) (pub, + a2)]  = 0, 
(3.14) 

a, = [yu+ (1 - y )  v"] A,+ [yw+ (1 -7) @I A,, (3.15) 

a2 = (pV+a)h,+(pw+@)h,. (3.16) 

For /3 = 1 the bracketed term in (3.14) has one pair of imaginary roots for sufficiently 
small values of the Mach number M,, and in this case the equations are elliptic. For 
p = 0 this bracketed term is a first-order polynomial in A,, and as such can have no 
imaginary roots. Consequently the small scalar-potential approximation (p = 0) 
produces a non-elliptic approximation for the compressible Euler equations, for any 
value of Mach number. 

For the special case in which all components of the transverse velocity are zero, 
then a,  = a2 = 0, and if the local Mach number defined by M 2  = M;u2 /T  is 
introduced then the bracketed term in (3.14) becomes 

rp( 1 M 2 )  hi +A;  + A;], (3.17) 

which reproduces the well-known result that  the Euler equations (p = 1 )  are elliptic 
for M < 1. 

where 

3-2 
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4. Numerical solution procedure 
4.1. Differencing procedures and boundary conditions 

Streamwise derivative terms in the governing equations have a form such as 
ua( )/ax, and because the streamwise velocity u is very small in the viscous- 
dominated region near no-slip walls, it is essential to use implicit algorithms which are 
not subject to stringent stability restrictions unrelated to  accuracy requirements. The 
present method is semi-implicit and seeks to reduce the amount of iteration and 
other computational labour required and yet avoid the more severe stability restric- 
tions of explicit algorithms. I n  all of the calculations performed here and elsewhere 
while developing the solution algorithm, the streamwise step size has been limited 
only by accuracy considerations and not by instability. The present method of solution 
is also very economical, considering the general complexity of the system of governing 
equations. The algorithm can be coded such that an entire three-dimensional flowfield 
requires roughly the same computational labour as one or two time-step iterations 
of an efficient implicit algorithm for the compressible Navier-Stokes equations 
(e.g. Briley 8.1 McDonald 1977). assuming the same grid is used Since time iterative 
algorithms for the Navier-Stokes equations presently require a minimum of 5G100 
time-step iterations to  compute a steady solution, the present method is well over 
10 times more economical and also requires far less computer storage. The run time 
is in the range of O.OOGO.036 s per grid point (CDC 7600). 

The governing equations are replaced by an implicit finite-difference approximation 
whose formal accuracy is O(Ax, Ay2, 69). The algorithm employs two-point backward 
differences for streamwise (x) derivatives and three-point central differences for 
transverse ( y  or z )  derivatives. The streamwise step size Ax is variable, and an 
analytical coordinate transformation devised by Roberts (1971) is employed for each 
transverse coordinate direction, as a means of introducing a non-uniform grid to 
concentrate grid points in the wall shear-layer regions. Although a centred Crank- 
Nicolson formulation could be used for axial derivatives, the formal accuracy would 
not be improved in the present algorithm, since ‘nonlinear coefficients ’ which depend 
on certain dependent variables are evaluated explicitly during portions of the solution 
procedure The explicit evaluation of these nonlinear coefficients serves to linearize 
and decouple selected equations and variables from the remaining equations and 
variables, and this both simplifies and provides economy in the solution procedure. 
Second-order accuracy is rigorously maintained for the transverse coordinate 
directions. No ‘upwinding’ or artificial dissipation of any kin6 is used for the 
transverse coordinate directions. 

In  all of the solutions reported here, no-slip or symmetry boundary conditions are 
prescribed, as appropriate, and the adiabatic wall condition &@/an = 0 was used, 
where n denotes the surface normal coordinate. No boundary condition is required 
for density, since it is computed algebraically from the state equation. The no-slip 
condition 21 = U I =  0 must be expressed in terms of 4, @ and Ll1. The normal velocity 
component is specified by prescribing @ = 0 and the Neumann condition a@/& = 0. 
The tangential component of the no-slip condition is written as 

where it denotes the unit tangent vector, and the finite-difference forms of (2.49) and 
(4.1) are combined to provide a boundary condition relating Q, a t  the wall to 4 and 
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$. A Neumann boundary condition for pressure p a t  a no-slip wall is obtained from 
the normal momentum equation as 

(4.2) in. [Vp - Re-lpF'] = 0, 

where the convective terms vanish because U = 0. 

4.2. Sequence of solution 

With the exception of the equations governing the streamwise vorticity SZ, and 
secondary- flow stream function $, the system of equations is decoupled here to allow 
each equation to  be solved separately as a scalar equation. This requires a sequence 
of solution such that implicit variables not associated with the scalar equation curr- 
ently being solved are available from solution of a previous scalar equation in the 
sequence. The equations governing streamwise vorticity and secondary- flow stream 
function are solved as a (linear) coupled system because the no-slip boundary cond- 
itions couple these equations in a way that would severely restrict the axial step size 
if these equations were treated as decoupled. An analogous situation is well known 
in time-dependent algorithms for the vorticity/stream- function form of the two- 
dimensional Navier-Stokes equations. The step-size limitation is much more severe 
in the present case because the ' time-like ' derivatives have the form ua( )/ax, and 
u+O a t  a no-slip wall. 

In  most applications, knowledge of initial (starting) conditions will be incomplete. 
Initial conditions must then be specified from a parametric or some other convenient 
description of the flow and then adjusted as part of a starting procedure to  achieve 
a degree of local compatibility with the governing equations. A procedure for 
initializing and starting the algorithm will be outlined following a description of the 
algorithm itself. It is beneficial to introduce a further change of variables expressing 
the pressure p as a correction 6p to the potential flow pressure P: 

p = P+Sp. (4.3) 

This will prove convenient in starting the algorithm when the given potential flow 
has nonzero streamwise pressure gradients (aP/ax =!= 0). Once the algorithm has been 
started, however, the continued use of (4.3) is a simple change of dependent variables 
and does not represent a physical approximation. The manner in which Sp appears 
in the governing equations is unusual in that a(6p)/az appears only in the x-momentum 
equation and not in the pressure equation (2.47). It is thus beneficial to rewrite Sp 
in the following form : 

(4.4) 

where A (Ap)  dA = 0 for all x, and A denotes cross-sectional area. Equation (2.47) 
now governs Ap but does not contain p,, which is in effect the arbitrary constant 
of the Neumann problem for Ap a t  each x-location. As a consequence, (2.47) can be 
solved for Ap before p ,  is known, and p ,  can then be adjusted during solution of 
the x-momentum equation (2.35) to ensure that the integral mass-flux relation 

6~ = pm(x) + A P ( ~ ,  Y ,  z ) ,  

j A  ( p u )  dA = Q = constant (4.5) 

is satisfied. 
A summary of the procedure used to advance the solution a single streamwise step 

to the (n+l)-level xn+l from known quantities at xn follows. Unless specifically 
mentioned to the contrary, the transverse velocities u4, w4, u$, we and the density 
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p are evaluated explicitly at the n-level. In  addition, the convective operator is 
evaluated as pnUn* V. Values of V ,  W ,  P,  h,, h, and h, are given and thus known at 
both xn and xn+l. 

and $."+l which 
is solved as a 2 x 2 coupled system. For this purpose artificial time derivatives are 
added to each equation, and an iterative block-implicit scheme (Briley & McDonald 
1980) is used. In  prescribing no-slip boundary conditions, the tangential component 
(4.1) contains a contribution from 4; this contribution is evaluated using #n .  Terms 
in the vorticity equation (B 1) containing u, v+ and w$ are evaluated using un, v$ 
and w; ; x-derivatives of v+ and w+ are evaluated using n- and (n- 1)-level quantities. 

(2) The pressure equation (B 3) is solved for Apn+l using an iterative scalar AD1 
scheme. In  this equation all appearances of v$+l and w$+l are evaluated using $n+l, 
and u, p ,  vuI and w4 are evaluated using n-level quantities. 

(1) Equations (B 1) and (B 2) form a linear coupled system for 

(3) The energy equation (B 4) is solved for 
(4a) Using an assumed value of p$+l to  begin a secant iteration, and values of Apn 

and Apn+l now available, the x-momentum equation (B 5) is solved to determine un+l ,  
using a scalar AD1 scheme. 

(4b) The density pn+l is evaluated algebraically from the state equation (B 6) using 
pn+l ,  

(4c) For internal flows the integral mass-flux relation (4.4) is evaluated using un+l 
and pn+'. 

(4d) Assuming that the initial guess for p:+l was not exact, the integral mass-flux 
relation will not be satisfied, and steps (4a-c) are repeated iteratively using the 
standard secant method (cf. Ralston 1965) to  find the value ofp;+l that  leads to un+l 
and pn+l  satisfying the integral mass-flux relation (4.4). I n  the incompressible limit, 
all equations in this iteration are linear, and the secant iteration is exact on the third 
iteration. A t  high subsonic Mach numbers, a fourth or even fifth iteration may be 
required. 

( 5 )  Finally, the continuity equation (B 7)  is solved for #n+l using an iterative scalar 
AD1 scheme and currently available values of un+l and p n + l .  The velocity components 
vn+l,  wn+l ,  Cn+l and Gn+l are then evaluated from #n+l and $n+l .  

using a scalar AD1 scheme. 

p$+l and Apn+l,  which are now available. 

4.3. Starting Procedure 

Initial conditions for velocity are devised from the potential flow as follows: 

Here f is a von Karman polynomial velocity profile (zero pressure gradient), yw is 
the distance to the nearest wall, and 6 is a specified mean boundary-layer thickness. 
The profile shape f is scaled such that f = u,, for yw > 8, where ub is a constant that 
adjusts for internal flow blockage, giving a non-dimensional mass flux of unity. I n  
all calculations performed here, the initial total enthalpy was taken as constant, and 
.the initial streamwise vorticity was taken as zero unless otherwise stated. 

Using On, (B 2 )  is first solved to obtain $n,  and then taking A p  as zero, steps (3)-(5) 
of the algorithm are solved to obtain #n+l. Taking # n  as $n+l, vn and wn are 
recomputed from $ n ,  kn, V and W ,  and a profile adjustment is made as in (4.6) to 
satisfy the no-slip conditions. The streamwise vorticity On is then redefined using vn  
and wn. This procedure ensures that the initial conditions for all variables except Ap 
are reasonably compatible with the governing equations and boundary conditions. 
The first step is then divided into a number (say 10) of smaller steps, and is computed 
taking Ap = 0 in the streamwise momentum equation. This allows the effect of the 
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FIGURE 2. Geometry of circular-arc square duct. 
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initial 'impulse' in streamwise gradients of v+, w4 and hence Ap to decay before 
continuing, and is analogous to starting procedures for many boundary layer 
methods. The pressure correction Ap is then computed as in step (2) of the algorithm, 
and the calculation then proceeds using the complete algorithm. In some instances 
it has been found that introducing the streamwise pressure gradient term i3Aplax 
gradually over 5 or 10 streamwise steps eliminates streamwise oscillations. 

5. Application to flow in a curved square duct 
The analysis is applied to laminar subsonic flow in a circular-arc duct of square 

cross-section as shown in figure 2. A potential-flow coordinate system is used such 
that orthogonal streamlines and velocity potential lines from an incompressible 
potential flow form the axial and radial coordinates respectively, and the third 
coordinate consists of straight lines normal to the endwall planes. This coordinate 
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Streamwise distance, Re-' x / d  

FIGURE 4. Validation of the small-scalar-potential approximation for flow in a circular-arc 
square duct  with K = 100, S/d = 0.1. 

system is defined by h, = h, = r In (RJR,) and h, = 1. This potential flow has an axial 
velocity U given by U = r-l/In ( R 2 / R l ) ,  with V = W = 0 and P = 1 - U2. Computed 
results are given for cases having both large and small curvature, and both thick and 
thin inlet shear layers. All flow cases considered here were computed for M ,  = 0.05 
and P, = 1. 

5.1. Demonstration of a well-posed initiallboundary-value problem 

Before considering the flow in curved ducts, the role of the small-scalar-potential 
approximation in defining a well-posed initial/boundary-value problem was tested 
empirically in calculations for a straight duct with Re = 1000 (based on d )  and with 
an inlet shear-layer thickness S/d = 0.1. Two calculations were performed, one with 
p = 0 and the other with /3 = 1 ; the calculations were otherwise identical in every 
detail. The streamwise development of centreline velocity from these calculations is 
shown in figure 3 with the customary scaling of streamwise distance. The elliptic case 
(p = 1) was found to display behaviour indicative of an ill-posed problem, whereas 
the non-elliptic case (p  = 0) representing the small-scalar-potential approximation 
appears well-posed and also agrees with the measurements of Goldstein & Kreid 
(1967). All remaining calculations considered here were performed with p = 0. 

5.2. Validation of the small-scalar-potential approximation 

Calculations were performed for cases whose centreline radius of curvature R is both 
large (R/d = 100) and small (R/d = 2),  each case having S/d = 0.1. The Dean number 
K = Re (d/R)i was fixed a t  100 for each case, to facilitate comparison both between 
the two solutions and (for large x )  with the recent calculations of Ghia et al. (1981) 
for the incompressible fully developed flow regime. The maximum absolute value of 
each ($ or +) component of transverse velocity is shown against streamwise distance 
in figure 4 for each case. For a given value of K ,  the scaling shown is known to remove 
much of the dependence on curvature. The results in figure 4 show that the 
$-component of the transverse velocity Us is significantly less than the +-component, 
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FIGURE 5.  Streamwise (u) and radial (v) velocities at  centreline for a circular-arc square duct 
with K = 100, S/d = 0.1. 

except very near the start of the calculation. This comparison is taken as an indication 
that the assumption of small U$ is valid in the developing-flow region where most 
practical applications occur, and for both large and small radius of curvature. 

The behaviour of streamwise and radial centreline velocity against streamwise 
distance is shown in figure 5 for these two cases. The structure of these developing 
flows is such that the centreline streamwise velocity initially proceeds along the path 
followed in a straight duct ; this reflects acceleration due to  the viscous displacement 
(blockage) effect. The departure from this path (beginning around streamwise step 
number 10) represents distortion of the primary flow by the secondary flow, as 
evidenced by the large radial velocity a t  the centreline. The oscillatory behaviour with 
increasing x is consistent with Hawthorne's (1951) observation in inviscid secondary- 
flow theory that an oscillatory behaviour will occur once there is sufficient distortion 
of the primary flow. Finally, figure 5 shows that a slight dependence on R/d persists 
even in the fully developed regime. 

Finally, i t  is noted that for the low Mach number considered (M = 0.05), there is 
a quasi-fully-developed flow region beginning around (x/d) Re-' = where the 
compressible flow has essentially the same behaviour as in the asymptotic fully 
developed flow regime of an incompressible flow. In this quasi-fully-developed region 
the $-component approaches zero (figure 4), and the small-scalar-potential approxi- 
mation in fact reduces (in the incompressible limit) to the exact equations governing 
fully developed flow. Further downstream, the Mach number of a compressible flow 
will increase owing to viscous heating, and the flow will eventually choke. The 
accuracy of the present calculations can be examined in this quasi-fully-developed 
flow region by comparison with the recent calculations of Ghia et al. (1981). A 
representative comparison for both streamwise and radial velocity is shown in 
figures 6(a ,b )  for the case with K = 100, R/d = 100 and Re = 1000, and very good 
agreement is observed. The data points shown are representative of the Ghia et al. 
solution, but do not correspond to their grid points. 
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FIGURE 7. Geometry for 90" bend with Rld = 2.3 
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I I I 
( a )  30" ( b )  60" 

1 1 

(c )  77.5" ( d )  90" 

FIGURE 10. Computed (top) and measured (bottom) streamwise velocity contours for a 90" bend 
with Rld = 2.3, Re = 790, S/d = 0.4. Computed contours have adjusted mass flux (inside of bend 
is to right). 

5.3. Comparison with experimental measurements 

Taylor, Whitelaw & Yianneskis (1980) have obtained laser velocimetry measurements 
of both radial and streamwise velocity components in a 90" bend of square cross-section 
and curvature Rld = 2.3. Their measurements were taken for a Reynolds number 
Re = 790, and the inflow conditions correspond to a shear-layer thickness of 
approximately Sld = 0.4. The geometry is shown in figure 7 and includes straight 
extensions both upstream and downstream of the bend. The coordinate system in 
use here did not allow for computation in the straight extensions of the geometry, 
and thus the calculation was started a t  the start ofthe bend (0"). A29 x 15 non-uniform 
grid was used for the ( y , z )  cross-section. Although a potential-flow code for this 
geometry was not available, this potential flow has been computed by Humphrey, 
et al. (1977). The potential-flow pressurc P is needed to start this calculation, and 
for convenience was approximated as follows. The potential flow pressure P on the 
inner and outer walls was taken from their figure 5 ( b ) ,  and then a t  each streamwise 
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(a) 30°, maximum I Us I = 0.50 (b)6O0,maximum IUsl=0.73 
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FIGURE 11.  Pressure correction Ap (top) and secondary-velocity vectors (bottom) for a 90" bend 
with Rld = 2.3, Re = 790, S/d = 0.4 (inside of bend is to right), 

location the potential-flow velocity U was approximated by a profile that varies as 
r - l ,  satisfies Q = 1.0, and matches the pressure a t  both inner and outer walls; the 
pressure P was then obtained from P = 1 - V. Although the transverse potential 
velocity W is identically zero for this geometry, the radial potential velocity V is not 
known and was neglected. This means that the small-scalar-potential approximation 
is defined relative to the streamwise coordinate instead of the potential flow for this 
calculation. The initial streamwise vorticity was estimated from the Squire-Winter 
formula (2.27), using the local transverse vorticity and assuming an average turning 
angle dx/R of 0.05 rad a t  the start of the bend, based on the ratio of the measured 
centreline radial velocity to the mean velocity. This streamwise vorticity distribution 
was adjusted by the profile shape f(y,/S) prior to initiation of the starting procedure. 
These approximations in initial conditions and in neglecting V will affect the present 
comparison somewhat, but should not be very important a t  downstream locations 
once large secondary flows have developed and primary flow distortion has occurred. 
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It was not possible to obtain a complete matching of the inflow velocity distribution, 
and some adjustment must be made to facilitate the comparison between calculation 
and measurements. The inflow velocity profiles along both radial ( z  = 0.5) and 
transverse (y = 0.5) coordinates through the duct centreline are shown in figure 8. 
The present starting profiles did not agree well with measurements unless an 
adjustment was made in the mass flux used to normalize the computed velocity 
profiles. When the present reference velocity U, is reduced by 7 % for the purpose 
of comparison, the non-dimensional velocity profiles then agree well with measure- 
ments (figure 8). The need for this adjustment reflects a 7 % difference between the 
computed and measured mass flux, which was evaluated here by a second-order 
accurate integration using the trapezoidal rule. Part of this 7 %  difference can be 
attributed to the form assumed here for the velocity distribution in the corner regions, 
and part is perhaps due to  experimental error. Both adjusted and unadjusted curves 
are shown here to assist with the comparison. 

The behaviour of computed streamwise and radial centreline velocity against 
streamwise distance is compared with measured data in figure 9. The computed and 
measured results agree well when adjusted to compensate for the difference in starting 
conditions (cf. figure 8). The comparison of centreline quantities in figure 9 is believed 
to be a sensitive indicator of the degree of agreement because it emphasizes the very 
severe distortion of the streamwise velocity for this case, wherein the streamwise 
velocity decreases from about 1.7 to  about 0.7 within the bend. The peak radial 
velocity at the centreline is about 0.4. 

Computed contours of streamwise velocity (adjusted) are compared in figure 10 
with contours derived from the measurements, and the agreement is generally good. 
Finally, the computed behaviour of secondary velocity and pressure correction Ap&, 
is omitted) is shown in figure 11. The computed behaviour of Ap differs significantly 
from the potential-flow pressure (not shown), which is two-dimensional. The secondary 
flow is very strong; the peak value of transverse velocity is 0.73 and occurs a t  the 
60" location. 

6.  Concluding remarks 
The goal of the present investigation was to  combine physical approximations of 

acceptable accuracy with the order-of-magnitude improvement in economy of 
solution derived from non-elliptic approximating equations. When large secondary 
flows are present, measured static pressures have differed considerably from what is 
attributable to a potential flow. The present investigation provides some clarification 
of the extent to which the difference in pressure from the (elliptic) potential flow can 
be represented by a non-elliptic approximation which avoids global iteration in the 
solution algorithm. It has been shown here that i t  is not necessary to introduce direct 
approximations in pressure-gradient terms to obtain non-elliptic equations governing 
three-dimensional flows with large secondary velocity. The physical approximations 
made in these non-elliptic equations are suggested by boundary layer order-of- 
magnitude estimates and are defined as a correction to  the potential flow. Although 
detailed static-pressure measurements were not available owing to the low dynamic 
head of the laminar flow considered, the present approximations were sufficient to 
obtain good agreement with measurements of both streamwise and radial velocity 
components for flow in a square duct with a 90" bend. Although the present results 
do not provide a definitive assessment of the accuracy or range of applicability of 
the present approximations, they do suggest that the analysis will prove useful for 
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many applications, given the considerable economy provided by the non-elliptic 
approximation. 
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Appendix A. Classification of approximations in U-,  V - ,  W- and 
P-variables 

It is of interest to compare the results of $ 3  with similar results for other two- and 
three-dimensional approximations that have been made in terms of the conventional 
velocity components and pressure u, v, w and p .  The notation is the same as in the 
main text, except that  x-, y - ,  and z-subscripts denote partial derivatives. The most 
general approximation considered here is often referred to  as the parabolized 
or thin-layer Navier-Stokes equations, obtained by neglecting only streamwise 
diffusion terms (u,. = v,, = w,, = 0). Only the incompressible Cartesian form of 
these equations is considered, and ail subsequent approximations are classified 
simultaneously by introducing parameters which allow selected additional terms in 
these equations to be neglected. 

New variables are introduced for transverse velocity gradients as follows : 

These equations can then be written as the following system of first-order equations : 

Subscripted parameters have been introduced in (A 8)-(A 10) for the streamwise 
pressure-gradient term ul, and for convective pz, p3 and diffusion uZ, v3 terms in the 
transverse momentum equations. These parameters are assigned values of 0 or 1 
according to whether their respective terms are to be neglected or retained in the given 
approximation. 

Although the characteristic equation for the system expressed as (A 1)-(A 10) is 
degenerate, a nondegenerate first-order system is obtained if (A 1)-(A 6)  are replaced 
by the following six equations, obtained by manipulation of the original system : 

- - 
V r  v,, W -  w,, (A 11), (A 12) 

(A 13), (A 14) 

(A 151, (A 16) 

- -  v,- v, = 0, m,- @, = 0, 

ox+ v,+ w, = 0, o,+ v,+ @, = 0. 

The characteristic equation for this system is given by 

I l e - 2 A i  A, &(A; + [a1 u2 u3 A: + v g  A; + u2 hi] = 0. (A 17) 
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The characteristic equation for the inviscid system given by (A 7)-(A 10) with 
Re-’ = 0 is 

( u h , + ~ h y + W A , ) 2 [ a 1 p 2 P 3 ~ ~ + p 3 ~ ~ + p 2 ~ ~ l  = 0. (A 18) 

The possibility of imaginary roots A, is governed by the bracketed term in both 
(A 17)  and (A 18), and two observations comparing these equations with the 
corresponding Characteristic equations (3.12) and (3.13) for the small-scalar-potential 
approximation are of interest. First, the parameters p 2  and p3  do not appear in the 
viscous characteristic equation (A 17), and thus the classification of the viscous 
approximation does not depend on the treatment of convective terms in the trans- 
verse momentum equations ; this was also true for the small-scalar-potential 
approximation. A second observation is that the viscous characteristic equation 
(A 17) does depend on al, and hence on the treatment of the streamwise pressure- 
gradient term. Although the parameter a1 was not shown in the analysis of $3,  the 
viscous characteristic equation (3.12) for the small-scalar-potential approximation 
does not depend on the treatment of the streamwise pressure-gradient term. Of 
course, the inviscid characteristic equations (3.13) and (A 18) depend on the treat- 
ment of these convective and pressure-gradient terms, and as discussed previously, 
this is significant for flow at high Reynolds number. 

In  the remainder of this Appendix, both convection and diffusion terms in each 
transverse momentum equation are either retained or neglected together (i.e. p2 = v 2  
and p3  = v3). In  this case, the bracketed terms in (A 17) and (A 18) are identical, and 
the classification is the same for both viscous and inviscid forms of the equations. 
Also, the classification for the two-dimensional form of these equations (w, a/& = 0) 
depends on these same bracketed terms, but with the redefinitions A, = 0, p3 = v3 = 1.  
Several types of flow approximations will now be discussed. 

First, in the parabolized or thin-layer Navier-Stokes equations, the only approxi- 
mation made is to neglect streamwise diffusion terms (all parameters are assigned 
a value of 1) .  Since imaginary roots occur in (A 17) and (A 18) for this case, this system 
of equations is elliptic. If the streamwise pressure-gradient term is suppressed (a, = 0 ; 
all other parameters = 1 )  then imaginary roots do not occur and the system is 
non-elliptic. This latter approximation has been widely employed to allow the use 
of forward-marching algorithms, both as a ‘numerical ’ approximation during global 
iteration to solve the elliptic system, and as a ‘physical’ approximation leading to 
a non-elliptic system. These classifications are the same in two dimensions. 

The approximation that neglects both convection and diffusion terms in the 
y-momentum equation (p2, v2 = 0; all other parameters = 1 )  results in a non-elliptic 
system. This approximation follows from an assumption that w is small, and gives 
the boundary-layer equations (plus extra viscous terms in three dimensions) in the 
form used when the pressure gradients depend on coordinate curvature terms in the 
y-momentum equation. The slender-channel approximations of Blottner (1977) and 
Anderson (1980) are of this type. 

In three dimensions an assumption that both w and w are small suggests an 
approximation neglecting convection and diffusion terms in both y- and z-momentum 
equations (p , ,  P3, v2, vg = 0; a1 = 1) .  However, the characteristic equations (A 17) and 
(A 18) are degenerate in this case, and this system of equations is insufficient to govern 
the behaviour of streamwise vorticity. This possibility does not arise in two 
dimensions. The small-scalar-potential approximation of $ 2 avoids this difficulty by 
assuming that v4 and w4 are small, rather than v and w. 
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Appendix B. Governing equations in orthogonal coordinates 
Following algebraic simplification in some instances, the governing equations as 

approximated in general orthogonal coordinates are given below in the order in which 
they are solved by the present solution algorithm. 

Vorticity equation (2.46) 

a a p2 h, h, Q, +- h, pvQ, +- h, p d 2 ,  h, ax aY aZ 

Vorticity definition (2.49) 

Pressure equation (2.47) 

where e, and c, are given in (2.31) and (2.32). Note that the viscous terms vanish 
in (B 3), but appear in the boundary condition (4.2). 

Energy equation 

where J = h, h, h,. Note that the last term in brackets was omitted in (2.45) and 
vanishes for Pr = 1. 

x-momentum (2.35) 

State equation (2.44) 

p = ( P  + p m  + Ap) yM2, [e - i ( y  - 1) Mt 92]1-' . (B 6) 

Continuity (2.48) 



76 W.  R. Briley and H .  McDonald 

R E F E R E N C E S  

ANDERSON, 0. L. 1980 Calculation of internal viscous flows in axisymmetric ducts at  moderate 
to high Reynolds numbers. Comp. Fluids 8, 391-441. 

ANDERSON, 0. L. & HANKINS, G. B. 1981 Development of a parabolic finite difference method for 
3-D high Reynolds number viscous internal flows. In Computers in Flow Predictions and Fluid 
Dynamics Experiments, 119-128. ASME. 

BAKER, A. J. & ORZECHOWSKI, J. A. 1983 An interaction algorithm for three-dimensional 
turbulent subsonic aerodynamic juncture region flow. AIAA J .  21, 524-533. 

BLOTTNER, F. G.- 1977 Numerical solution of slender channel laminar flows. Comp. Meth. Appl. 
Mech. & Engng 11, 31S339. 

BRILEY, W. R.  1974 Numerical method for predicting three-dimensional steady viscous flow in 
ducts. J .  Comp. Phys. 14, 8-28. 

BRILEY, W .  R.  &MCDONALD,H. 1977 SolutionofthemultidimensionalcompressibleNavier-Stokes 
equations by a generalized implicit method. J .  Comp. Phys. 23, 372-397. 

BRILEY, W. R. & MCDONALD, H. 1980 On the structure and use of linearized block AD1 and related 
schemes. J .  Comp. Phys. 34, 54-73. 

BRILEY, W. R., MCDONALD, H. & SHAMROTH, S. J .  1983 A low Mach number Euler formulation 
and application to time-iterative LBI schemes, AIAA J .  21, 1467-1469. 

CARETTO, L. S., CURR, R. M. & SPALDINO, D. B. 1973 Two numerical methods for three-dimensional 
boundary layers. Comp. Meth. Appl. Mech. & Engng 1, 39-57. 

COURANT, R. & HILBERT, D. 1966 Methods of Mathematical Physics, vol. 11. Interscience. 
DAVIS, R. T. & RUBIN, S. G. 1980 Non-Navier-Stokes viscous flow computations. Comp. Fluids 

GARABEDIAN, P. R. 1964 Partial Diaerential Equations. Wiley. 
GHIA, K.  N., GHIA, U., SHIN, C. T. & REDDY, D. R. 1981 Multigrid simulation of asymptotic 

curved-duct flows using a semi-implicit numerical technique. In Computers in Flow Predictions 
and Fluid Dynamics Experiments, pp. 11-25. ASME. 

GHIA, K. N. & SOKHEY, J. S. 1977 Laminar incompressible viscous flow in curved ducts of regular 
cross-sections. Trans A S M E  I : J .  Fluids Engng 99, 64CL648. 

GOLDSTEIN, R. J. & KREID, D. K. 1967 Measurement of laminar flow development in a square 
duct using a laser-doppler flowmeter. Trans. A S M E .  E :  J .  Appl. Mech. 34, 813-818. 

HAH, C. 1983 A Navier-Stokes analysis of three-dimensional tubulent flows inside turbine blade 
rows a t  design and off-design conditions. A S M E  Paper 83-GT-40. 

HAWTHORNE, W. R. 1951 Secondary circulation in fluid flow. Proc. R. Soc. Lond. A 206, 374-387. 
HORLOCK, J. H. & LAKSHMINARAYANA, B. 1973 Secondary flows: theory, experiment, and 

application in turbomachinery aerodynamics. Ann. Rev. Fluid Mech. 5,  247-280. 
HUMPHREY, J. A. C., TAYLOR, A. M. K. & WHITELAW, J. H. 1977 Laminar flow in a square duct 

of strong curvature. J .  Fluid Mech. 83, 509-527. 
JOHNSTON, J .  P.  1960 On the three-dimensional turbulent boundary layer generated by secondary 

flow. Trans. A S M E D :  J .  Basic Engng 82, 233-248. 
KHOSLA, P. K. & RUBIN, S. G. 1983 A composite velocity procedure for the compressible 

Navier-Stokes equations. A I A A  J .  21, 154g1551. 
KRESKOVSKY, J. P.,  BRILEY, W. R. & MCDONALD, H. 1981 Analysis and Computation of 

Three-Dimensional Flow in Strongly Curved Ducts, In Computers in Floui Predictions and Fluid 
Dynamics Experiments, pp. 129-140. ASME. 

LAKSHMINARAYANA, B. & HORLOCK, J.  H. 1973 Generalized expressions for secondary vorticity 
using intrinsic coordinates. J .  Fluid Mech. 59, 97-1 15. 

LEVY, R., BRILEY, W. R. & MCDONALD, H. 1983 Viscous primary/secondary flow analysis for 
use with nonorthogonal coordinate systems. A f A A  Paper 834556. 

MOORE, J. & MOORE, J.  G. 1979 A calculation procedure for three-dimensional viscous compressible 
duct flow. Parts I and 11. Trans. ASME I: J .  Fluids Engng 101, 415-428. 

PATANKAR, S. V. & SPALDINO, D. B. 1972 A calculation procedure for heat, mass, and momentum 
transfer in three-dimensional parabolic flows. fnntl J .  Heat Mass Transfer 15, 1787-1805. 

8, 103-131. 



Viscous flows with large secondary velocity 77 

PRATAP, V. S. & SPALDING, D. B. 1976 Fluid flow and heat transfer in three-dimensional ductflows. 

PULLIAM, T. H. & STEGER, J. L. 1980 Implicit finite-difference simulations of three-dimensional 

RALSTON, A. 1965 A First Course in Rumerical Analysis, McGraw-Hill. 
ROBERTS, G. 0. 1971 Computational meshes for boundary layer problems. In Proc. 2nd I d .  Conf. 

Num.  Meth. Fluid Dyn. (ed. M. Holt). Lecture Notes in Physics, vol. 8, pp. 171-177. Springer. 
RUBIN, S. G., KHOSLA, P. K. Bt SAARI, S. 1977 Laminar flow in rectangular channels. Parts I 

and 11. Comp. Fluids 5, 151-173. 
RUBIN, S. G. & REDDY, D. R. 1983 Global PNS solutions for laminar and turbulent flow. AIAA 

Paper 83-1911. 
SCHIFF, L. B. & STEOER, J. L. 1980 Numerical simulation of steady supersonic viscous flow. AIAA 

STANITZ, J.  D., OSBORN, W. M. & MIZISIN, J. 1953 An experimental investigation of secondary 
flow in an accelerating rectangular elbow with 90 degrees of turning. NACA T N  3015. 

TAYLOR, A . M .  K.  P., WHITELAW, J. H. & YIANNESKIS, M. 1982 Curved ducts with strong 
secondary motion ; velocity measurements of developing laminar and Turbulent flows. Trans 
ASME I:  J .  Fluids Engng 104, 35Ck358. 

VIGNERON, Y. C., RAKICH, J. V. & TANNEHILL, J. C. 1978 Calculation of supersonic viscous flow 
over delta wings with sharp subsonic leading edges. AIAA Paper 78-1 137. 

WILLIAMS, G. P. 1969 Numerical integration of the three-dimensional Navier-Stokes equations 
for incompressible flow. J .  Fluid Mech. 37, 727-750. 

Inti J .  Heat Mass Transfer 19, 1183-1187. 

compressible flow. AIAA J .  18, 159-167. 

J .  18, 1421-1430. 


